Queued Up: 2024 Edition
Characteristics of Power Plants
Seeking Transmission Interconnection
As of the End of 2023

Joseph Rand, Nick Manderlink, Will Gorman, Ryan Wiser, Joachim Seel, Julie Mulvaney Kemp, Seongeun Jeong, Fritz Kahrl

Lawrence Berkeley National Laboratory

April 2024

This work was funded by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Image source: Licensed from Shutterstock
Contents

- High-Level Findings
- Data Sources, Background, and Regulatory Activity
- Active Queue Requests
 - Active queue volume & time trends
 - Regional trends
 - Expected online year and current study status
 - Hybrid projects in the queues
- Operational and Withdrawn Requests
 - Volume of operational and withdrawn projects
 - Completion + withdrawn rates and trends
- Duration Trends – Time in Queues
- Conclusions & Possible Solutions

What are interconnection queues?

Utilities and regional grid operators (a.k.a., ISOs or RTOs) require projects seeking to connect to the grid to undergo a series of studies before they can be built. This process establishes what new grid system upgrades may be needed before a project can connect to the system and then estimates and assigns the costs of that equipment. The lists of projects that have applied to connect to the grid and initiated this study process are known as “interconnection queues”.

Visit https://emp.lbl.gov/queues to access related resources including the complete dataset used for this analysis and interactive data visualization tools.
High-Level Findings

Developer interest in solar, storage, and wind is strong
- Nearly 12,000 projects representing 1,570 gigawatts (GW) of generator capacity and 1,030 GW of storage actively seeking interconnection
- Solar, storage, and wind make up 95% of active queue capacity
- >94% (~1,480 GW) of proposed generation is zero-carbon

Completion rates are generally low; wait times are increasing
- Only ~19% of projects (14% of capacity) requesting interconnection from 2000-2018 reached commercial operations by the end of 2023
 - Completion rates are even lower for solar (14%) and battery (11%) projects
 - The average time projects spent in queues before being built has increased markedly. The typical project built in 2023 took nearly 5 years from the interconnection request to commercial operations¹, compared to 3 years in 2015 and <2 years in 2008.

Proposed capacity is widely distributed across the U.S.
- Substantial proposed solar capacity exists in most regions of the U.S.; >1 terawatt (TW) of solar active in queues
- >1 TW of storage is also active in the queues, primarily in the West and CAISO, but also in ERCOT, MISO, and PJM
- >360 GW of wind capacity in the queues, most in the non-ISO West, NYISO (offshore), PJM, and SPP.
- Only 79 GW of gas capacity active in the queues, less than 8% of active solar capacity

¹ In-service date was only available for 61% of all operational projects
Important Analytical Additions in the 2024 Edition of “Queued Up”

- **Regulatory activities**
 - Summary of key activities at the federal and balancing area level (slide 7)
 - Analysis of post-IRA interconnection request volume (slide 13 + appendix)

- **ERIS and NRIS applications**
 - Capacity of ERIS and NRIS projects within the queue (slide 20)
 - Timeline from interconnection request to signed IA by service type (slide 38)

- **Completion rates**
 - Capacity of executed IAs by region and relative to retirements / load growth (slide 22)
 - Detailed analysis of the study phase at which queue withdrawals occur (slide 30)
 - Comparison of operational projects from queue data with EIA-860 (slide 26)

- **More detailed breakdown of ‘other’ project categories**
 - Detail on Nuclear, Hydro, and Geothermal projects in the queue (see Slide 18)
 - Breakout of non-battery storage within the Queues (slide 19)

- **Miscellaneous items**
 - Implied peak load contribution of projects in Queue (slide 14)
 - DOE Transmission Interconnection Roadmap for possible solutions (slide 46)

Notes: (1) See slide 38 for full explanation of chart. (2) y-axis measures time from submitting an interconnection request to receiving an interconnection agreement. (2) ERIS is energy-resource interconnection service, NRIS is network-resource interconnection service
Data Sources

- Data collected from interconnection queues for 7 ISOs / RTOs and 44 non-ISO balancing areas (including utilities and Power Marketing Administrations), which collectively represent >95% of currently installed U.S. electric generating capacity

- Includes projects that connect to the bulk-power system, not distribution-connected or behind-the-meter\(^1\)

- Includes projects in queues through the end of 2023

- Substantial data cleaning, standardization, and QA/QC conducted by Berkeley Lab analyst team

- The full sample includes:
 - 4,155 “operational” projects (~470.4 GW)
 - 11,841 “active” projects (~2,598 GW)
 - 325 “suspended” projects (~54.9 GW)
 - 18,372 “withdrawn” projects (~3,097 GW)

Coverage area of entities for which data was collected

Data source: Homeland Infrastructure Foundation-Level Data (HIFLD)

Note that service areas can overlap

No data collected for Hawaii or Alaska

A full list of included balancing areas can be found in the Appendix

\(^1\) There are different processes for transmission- and distribution-system interconnection. This report only covers transmission interconnection.
Typical Interconnection Study Process and Timeline

- A project developer initiates a new **interconnection request (IR)** and thereby enters the **queue**
- A series of **interconnection studies** establish what new transmission equipment or upgrades may be needed and assigns the costs of that equipment
- The studies culminate in an **interconnection agreement (IA)**: a contract between the ISO or utility and the generation owner that stipulates operational terms and cost responsibilities
- Most proposed projects are **withdrawn**, which may occur at any point in the process
- After executing an IA, many projects are built and reach **commercial operation**

Note: These steps are in accordance with Federal Energy Regulatory Commission (FERC) pro-forma interconnection procedures as outlined in FERC Order 2023. Some ISOs already use a cluster-study approach. The data presented in this report pre-date Order No. 2023 implementation.
FERC Order 2023 overhauled the interconnection process, and many RTOs have pending and proposed interconnection process updates and reforms.

Interconnection Reforms in FERC Order 2023

<table>
<thead>
<tr>
<th>Reforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster studies; first ready, first served;</td>
</tr>
<tr>
<td>higher deposits & readiness criteria for developers</td>
</tr>
<tr>
<td>Timeline, process, and reporting</td>
</tr>
<tr>
<td>requirements for transmission providers; Financial penalties for delays</td>
</tr>
<tr>
<td>Visual representation (heatmaps) of available transmission capacity</td>
</tr>
<tr>
<td>Improved and standardized process for affected system studies</td>
</tr>
<tr>
<td>Improved procedures and flexibility for storage and hybrid resources</td>
</tr>
<tr>
<td>Consideration of alternative transmission technologies (GETs)</td>
</tr>
</tbody>
</table>

Major ISO/RTO Reforms & Updates

<table>
<thead>
<tr>
<th>ISO/RTO</th>
<th>Reforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISO</td>
<td>Increased milestone payments, adopted an automatic withdrawal penalty, and expanded site control requirements for interconnection facilities (approved by FERC, January 2024)</td>
</tr>
<tr>
<td></td>
<td>Proposed a cap on total queue size (rejected by FERC, January 2024)</td>
</tr>
<tr>
<td></td>
<td>Did not accept any new requests in 2023 due to pending reforms</td>
</tr>
<tr>
<td>CAISO</td>
<td>Prioritize requests where transmission system has available existing or planned capacity and limit requests in a study area based on planned transmission capacity</td>
</tr>
<tr>
<td></td>
<td>Require power purchase agreements to proceed to Phase II studies</td>
</tr>
<tr>
<td></td>
<td>Proposed to delay Cluster 16 request application window from April 2024 (new date TBD) due to queue volume and pending reforms</td>
</tr>
<tr>
<td>PJM</td>
<td>Implemented transition from serial first-come, first-served queue process to a first-ready, first-served clustered cycle approach, grouping projects into three-phase cluster cycles for studying and allocating interconnection costs (approved by FERC, November 2022)</td>
</tr>
<tr>
<td></td>
<td>Will not review new requests until early 2026 as it processes backlog</td>
</tr>
<tr>
<td>ERCOT</td>
<td>Texas HB 1500 proposed an interconnection cost cap, will be an important PUC rulemaking to follow in the future</td>
</tr>
</tbody>
</table>
Annual interconnection requests have surged since 2013 (both in terms of number and capacity); over 900 GW added in 2023 alone

As this chart implies, the rated generating capacity of proposed power plants is increasing over time. See Slide 17 for a detailed breakdown of this trend.

Notes: (1) This total annual volume includes projects with a queue status of "active", "suspended", "withdrawn", or "operational". (2) All values – especially for earlier years – should be considered approximate.
Active Projects in Interconnection Queues:
Volume, Regional Trends, Study Phase, and Hybrids

Includes data from all 7 ISO/RTOs and 44 non-ISO balancing areas, totaling 11,841 proposed projects

<table>
<thead>
<tr>
<th>Region</th>
<th>n (active)</th>
<th>Capacity (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO</td>
<td>995</td>
<td>523.3</td>
</tr>
<tr>
<td>ERCOT</td>
<td>1,090</td>
<td>269.2</td>
</tr>
<tr>
<td>ISO-NE</td>
<td>405</td>
<td>51.2</td>
</tr>
<tr>
<td>MISO</td>
<td>1,669</td>
<td>311.5</td>
</tr>
<tr>
<td>NYISO</td>
<td>492</td>
<td>131.6</td>
</tr>
<tr>
<td>PJM</td>
<td>3,309</td>
<td>286.7</td>
</tr>
<tr>
<td>SPP</td>
<td>703</td>
<td>144.9</td>
</tr>
<tr>
<td>Southeast (non-ISO)</td>
<td>1,134</td>
<td>173.3</td>
</tr>
<tr>
<td>West (non-ISO)</td>
<td>2,044</td>
<td>706.5</td>
</tr>
</tbody>
</table>

Notes: (1) Active capacity (GW) shown includes some estimates for hybrid storage capacity in cases where it was missing.
(2) Data were sought from 7 ISOs and 44 non-ISO BAs (full list available in appendix). (3) CAISO includes Cluster 15
Total (cumulative) active capacity in queues is now nearly 2,600 GW (2.6 TW); New (annual) capacity entering the queues has increased every year since 2014
Solar (1,086 GW), Storage (1,028 GW), and Wind (366 GW) make up 95% of active capacity in queues, with 3% (79 GW) from Gas. Most solar and storage capacity is in hybrid plants

- “Wind” includes both onshore and offshore.
- “Other” includes:
 - Hydropower
 - Geothermal
 - Biomass/biofuel
 - Landfill gas
 - Solar thermal
 - Oil/diesel
- “Storage” is primarily (99%) battery, but also includes pumped storage hydro, compressed air, gravity rail, and hydrogen.

See https://emp.lbl.gov/queues to access an interactive data visualization tool.

Notes: (1) Hybrid storage capacity is estimated for some projects using storage:generator ratios from projects that provide separate capacity data, and that value is only included starting in 2020. Storage duration is not provided in interconnection queue data. (2) Wind capacity includes onshore and offshore for all years, but offshore is only broken out starting in 2020. (3) Hybrid generation capacity is included in all applicable generator categories. (4) Not all of this capacity will be built.
Active queue capacity is highest in the West (706 GW), followed by CAISO (523 GW). Several regions have delayed accepting or processing new requests due to backlogs.

Notes: (1) *Hybrid storage capacity is estimated for some projects using storage:generator ratios from projects that provide separate capacity data, and that value is only included starting in 2020. Storage duration is not provided in interconnection queue data. (2) **Wind capacity includes onshore and offshore for all years, but offshore is only broken out starting in 2020. (3) ***Other in this chart includes Coal, Nuclear, Hydro, Geothermal, and Other / Unknown. (4) Not all of this capacity will be built.
Over 1,200 GW (including >500 GW of solar, >540 GW storage, and 125 GW wind) has requested interconnection since the passage of the IRA.

The IRA included a range of tax credits and other provisions anticipated to supercharge clean energy development. These include, for example:

- Extension of existing credits, including technology-neutral Production Tax Credits (PTCs) and Investment Tax Credits (ITCs)
- Emissions-based phase-out, no earlier than 2032
- Standalone storage eligible for ITC; new nuclear as of 2025
- Choice between PTC and ITC: whichever is most valuable
- Bonuses for energy community and domestic content
- USDA grants for rural coops to transition to clean electricity

Although not all of the post-IRA interconnection requests can be attributable to the IRA, these provisions increased developer interest in clean energy and the queues are one indicator of this.

Notes: (1) Pre-IRA includes the cumulative active capacity in the queues as of July 2022. (2) Post-IRA requests include all requests submitted since August 2022. (3) Withdrawn / Operational includes any projects that withdrew or came online since August 2022.
Active capacity in queues (~2,600 GW) is twice the installed capacity of U.S. power plant fleet (~1,280 GW); greater than peak load and installed capacity in all ISOs

Entire U.S. Installed Capacity vs. Active Queues

RTO Installed Capacity & Peak Load vs. Active Queues

Comparisons of queue capacity to installed capacity or peak load should also consider generators’ contributions to resource adequacy, for example their “effective load carrying capability” (ELCC). As variable resources, solar and wind contribute a smaller percentage of their nameplate capacity to resource adequacy and peak load compared to dispatchable generation like natural gas. The red lines in the chart are a simplified estimate of the peak load contribution of projects in the queue.

Decarbonizing the electric sector requires higher levels of installed solar and wind capacity to achieve the same resource adequacy contributions. High levels of storage can offset this need to some degree. Electrification of buildings and transport will also result in load growth.

Notes: (1) Hybrid storage in queues is estimated for some projects. (2) Total and RTO installed capacity from EIA-860, December 2023. (3) Peak load data from RTO websites. (4) Peak load contributions by region relies on NERC 2023 reliability assessments for standalone solar, onshore wind, and hydro. Storage, gas, coal, and nuclear are approximated with a peak load contribution of 100%, even though in practice their contributions will be smaller. Offshore wind contributions are based on recent reliability studies.
Proposed solar is widespread, with less in SPP and Northeast; Most wind in the West, SPP, and offshore; Proposed storage in all regions but highest in the West and CAISO; Gas is primarily in the Southeast

Note: Proposed and ongoing reforms in MISO and PJM resulted in few (or no) new requests in those regions in 2023 (see slide 7)
CA and TX dominate solar requests; Wind is in the West, Plains, and East Coast (offshore); Storage is highest in CA, TX, OR, AZ; Most gas in TX and Southeast, with new requests in CA.
The mean Solar plant requesting grid connection in 2023 was 193 MW, >250% larger than in 2015; proposed Wind (+66%) and Battery (+330%) plants have also grown since 2015.
Although Nuclear, Hydro, and Geothermal make up less than <1% of the active capacity in queues, this still represents >15 GW of capacity, indicating important development interest.

Active Nuclear capacity seeking grid connection increased to 10 GW in 2023 (up from ~6.5 GW in 2022), while Hydropower capacity held steady at ~5.7 GW. Geothermal capacity contracted slightly to 1.7 GW (from 2.1 in 2022).

Hydropower plants are proposed in several regions, but the majority of capacity is in the non-ISO West. Proposed Nuclear is only in the non-ISO Southeast and West, and Geothermal is only found in the West.
Batteries make up ~99% of storage capacity in the queues, but there are 10 GW of active requests for Pumped Hydro, Hydrogen, and Compressed Air Energy Storage (CAES)

All active requests for non-battery storage projects are in CAISO and the non-ISO West.

<table>
<thead>
<tr>
<th>Region</th>
<th>Pumped Storage</th>
<th>CAES</th>
<th>Unknown</th>
<th>Hydrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO</td>
<td>2,402</td>
<td>1,036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West (non-ISO)</td>
<td>3,000</td>
<td>2,720</td>
<td>902</td>
<td></td>
</tr>
</tbody>
</table>
74% of all active capacity requested Network Resource Interconnection Service (NRIS). Energy Resource Interconnection Service (ERIS) is less common. ERCOT’s approach is similar to ERIS.

*Outside of ERCOT, 87% of active capacity requested to be studied for NRIS.

Notes: (1) NRIS and ERIS were developed under FERC Order 2003, and apply to FERC-jurisdictional transmission providers. (2) ERCOT is not FERC jurisdictional, but uses a “connect and manage” interconnection service that is more similar to ERIS. (3) Data available for 27,693 requests from 6 ISOs and 2 non-ISO balancing areas.
49% (1,271 GW) of total capacity in queues has proposed online date by end of 2026; 12% (311 GW) already has an executed interconnection agreement (IA)

52% of solar (566 GW) is proposed to come online by the end of 2026, compared to 50% of storage (514 GW) and only 33% of wind (120 GW). 14% of solar capacity has an IA, compared to 15% of wind and just 10% of storage.

Notes: (1) *Hybrid storage capacity is estimated for some projects. (2) Proposed online dates are included in the developer’s original interconnection request, and may differ from actual online date. (3) Not all of this capacity will be built. (4) Study status categories are simplified and correspond to the process pre-FERC Order No. 2023 reforms.
CAISO currently has the most capacity with draft or executed IAs (67 GW). In PJM, just ~25 GW have signed IAs, though it’s the largest U.S. RTO.

While total capacity of generators and storage active in interconnection queues provides an indication of longer-term developer interest in grid expansion, it provides less insight into shorter-term resource adequacy concerns related to power plant retirements and/or load growth that is being driven by transport electrification, manufacturing growth, and data centers. Signed interconnection agreements provide a better understanding of the nearer-term pipeline of project development (see graph).

Predicting future power plant retirements and load growth is difficult. The graph indicates varying levels of difference between expected load growth and retirements when compared to the quantity of interconnection requests with a signed interconnection agreement.

Notes: (1) IA capacity bars include capacity in the queues that has either a draft or fully executed interconnection agreement. (2) 5-year peak load growth and expected retirements from NERC’s 2023 electricity supply and demand database. (3) Peak load contributions by region relies on NERC 2023 reliability assessments for standalone solar, onshore wind, and hydro. Storage, gas, coal, and nuclear are approximated with a peak load contribution of 100%, even though in practice their contributions will be smaller. Offshore wind contributions are based on recent reliability studies.
Capacity in hybrid plants is increasing: Hybrids comprise 53% of active solar capacity (571 GW), 51% of storage (525 GW), and 13% of wind (49 GW).

Notes: (1) Some hybrids shown may represent storage capacity added to existing generation; only the net increase in capacity is shown; (2) Capacity for hybrid plants (e.g., Wind+Solar+Storage) is captured in each generator category (i.e., the solar component shows up in hybrid solar, storage in hybrid storage), presuming the capacity is known for each type.

- **Solar Hybrids** include: Solar+Storage (548 GW), Solar+Wind (0.2 GW), Solar+Wind+Storage (12 GW)
- **Wind Hybrids** include: Wind+Storage (35 GW), Wind+Solar (0.2 GW), Wind+Solar+Storage (13 GW)
- **Storage Hybrids** may be paired with any generator type; most are paired with solar
- **Gas Hybrids** include: Gas+Solar+Storage (10 GW) [not shown above]
Hybrids comprise a sizable fraction of all proposed solar plants in multiple regions; wind hybrids are less common overall but still a large proportion in CAISO + West

<table>
<thead>
<tr>
<th>Region</th>
<th>% of Proposed Capacity Hybridizing in Each Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solar</td>
</tr>
<tr>
<td>CAISO</td>
<td>98%</td>
</tr>
<tr>
<td>ERCOT</td>
<td>49%</td>
</tr>
<tr>
<td>ISO-NE</td>
<td>30%</td>
</tr>
<tr>
<td>MISO</td>
<td>20%</td>
</tr>
<tr>
<td>NYISO</td>
<td>24%</td>
</tr>
<tr>
<td>PJM</td>
<td>24%</td>
</tr>
<tr>
<td>SPP</td>
<td>22%</td>
</tr>
<tr>
<td>Southeast (non-ISO)</td>
<td>34%</td>
</tr>
<tr>
<td>West (non-ISO)</td>
<td>81%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>53%</td>
</tr>
</tbody>
</table>

- **Solar** hybridization relative to total amount of solar in each queue is highest in CAISO (98%) and non-ISO West (81%), and is above 20% in all regions.

- **Wind** hybridization relative to total amount of wind in each queue is highest in CAISO (34%), the non-ISO West (30%), and is less than 10% in all other regions.
Operational & Withdrawn Projects: Volume and Completion Rates

Operational project data were available from all 7 ISO/RTOs and 31 non-ISO balancing areas, totaling 4,155 projects.

Notes: (1) The number of operational and withdrawn projects with available data may be fewer than the total number of operational or withdrawn projects for each entity. (2) Data were sought from 7 ISOs and 44 non-ISO BAs; operational and withdrawn project data may be delayed or unavailable. (3) Capacity (GW) shown in these tables does not include estimates for missing hybrid storage capacity.

<table>
<thead>
<tr>
<th>Region</th>
<th>n (Operational)</th>
<th>Capacity (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO</td>
<td>198</td>
<td>26.6</td>
</tr>
<tr>
<td>ERCOT</td>
<td>358</td>
<td>65.6</td>
</tr>
<tr>
<td>ISO-NE</td>
<td>255</td>
<td>34.7</td>
</tr>
<tr>
<td>MISO</td>
<td>459</td>
<td>66.7</td>
</tr>
<tr>
<td>NYISO</td>
<td>100</td>
<td>11.2</td>
</tr>
<tr>
<td>PJM</td>
<td>1,163</td>
<td>91.0</td>
</tr>
<tr>
<td>SPP</td>
<td>271</td>
<td>40.8</td>
</tr>
<tr>
<td>Southeast (non-ISO)</td>
<td>361</td>
<td>76.7</td>
</tr>
<tr>
<td>West (non-ISO)</td>
<td>990</td>
<td>57.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>n (Withdrawn)</th>
<th>Capacity (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO</td>
<td>1,630</td>
<td>401.0</td>
</tr>
<tr>
<td>ERCOT</td>
<td>803</td>
<td>195.6</td>
</tr>
<tr>
<td>ISO-NE</td>
<td>605</td>
<td>90.8</td>
</tr>
<tr>
<td>MISO</td>
<td>2,113</td>
<td>408.6</td>
</tr>
<tr>
<td>NYISO</td>
<td>843</td>
<td>135.7</td>
</tr>
<tr>
<td>PJM</td>
<td>4,588</td>
<td>476.4</td>
</tr>
<tr>
<td>SPP</td>
<td>1,419</td>
<td>280.8</td>
</tr>
<tr>
<td>Southeast (non-ISO)</td>
<td>2,001</td>
<td>450.1</td>
</tr>
<tr>
<td>West (non-ISO)</td>
<td>4,370</td>
<td>657.9</td>
</tr>
</tbody>
</table>
Volume (number and capacity) of operational and withdrawn projects is trending upward; more than 1,250 requests (>200 GW) were withdrawn in 2023.

Operational Projects

- Capacity online (queue data) (left axis)
- EIA reported capacity online (left axis)
- Number online (queue data) (right axis)

Withdrawn Projects

- Capacity withdrawn (GW, left axis)
- Number withdrawn (right axis)

Note: (1) In-service year only available for 61% of the “operational” project sample; withdrawn year only available for 64% of the “withdrawn” project sample. These figures therefore only include a subset of total data. (2) The discrepancy between queue capacity and EIA capacity in recent years (2022-2023) is attributable to lags in online/operational status reporting in the queue data.
The majority (>70%) of interconnection requests are withdrawn. Just 19% of requests (14% of capacity) submitted from 2000-2018 had been built as of the end of 2023.

Notes: (1) Final outcome for projects entering the queues in recent years may not yet be determined; some take 5 or more years from request to COD. (2) Status shown represents a snapshot of all available data as of the end of 2023. (3) Completion rate shown in chart on right is calculated by number of projects, not capacity. (4) Limited to data from 7 ISO/RTOs and 30 non-ISO balancing areas which provide comprehensive status information.
There is considerable variation in completion rates across generator types; Solar (13%) and Battery (11%) have lower historical average than Gas (31%) or Wind (20%).

By Number of Requests

<table>
<thead>
<tr>
<th>Generator Type</th>
<th>Operational</th>
<th>Active</th>
<th>Suspended</th>
<th>Withdrawn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td>11%</td>
<td>15%</td>
<td>74%</td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>31%</td>
<td>2%</td>
<td>67%</td>
<td></td>
</tr>
<tr>
<td>Solar</td>
<td>13%</td>
<td>10%</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>Solar+Battery</td>
<td>10%</td>
<td>37%</td>
<td>49%</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>20%</td>
<td>4%</td>
<td>75%</td>
<td></td>
</tr>
</tbody>
</table>

By Capacity of Requests

<table>
<thead>
<tr>
<th>Generator Type</th>
<th>Operational</th>
<th>Active</th>
<th>Suspended</th>
<th>Withdrawn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td>5%</td>
<td>27%</td>
<td>67%</td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>18%</td>
<td>1%</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>Solar</td>
<td>10%</td>
<td>15%</td>
<td>73%</td>
<td></td>
</tr>
<tr>
<td>Solar+Battery</td>
<td>7%</td>
<td>47%</td>
<td>43%</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>15%</td>
<td>5%</td>
<td>79%</td>
<td></td>
</tr>
</tbody>
</table>

Note: (1) Calculated as number of projects operational as of EOY 2023 divided by the total number of requests per year. (2) Includes data from 7 ISOs and 30 non-ISO BAs which provide comprehensive status information. (3) See appendix for time-series data.
The share of projects requesting interconnection from 2000-2018 that have reached COD is relatively low across regions: Only ISO-NE and ERCOT exceed 30% completion.

- Capacity-weighted completion rates are even lower; shown in brackets [%]
 - ISO-NE and ERCOT are the only regions with >20% of capacity reaching commercial operation date (COD)
- For interconnection requests from 2000-2018, ISO-NE (31%) and ERCOT (30%) had the highest project completion percentages, with CAISO (12%) and the Southeast (13%) lower on average
- These rates are variable by year, and trends may be shifting as queue volumes and reforms evolve
- The difference between regions, temporal trends, and the implications of these low rates on electric-sector decarbonization, are important areas for future research

Notes: (1) Capacity-weighted completion rates are shown in brackets []. (2) Percentages only include projects requesting interconnection from 2000-2018. (3) Includes data from 7 ISOs and 30 non-ISO balancing areas which provide comprehensive status information. (4) See appendix for time-series data.
Most withdrawals occur in earlier study phases (e.g., Feasibility or System Impact Study), but later-stage withdrawals (Facility or IA phase) may be increasing.

Late-stage withdrawals can be more costly for developers (sunk costs, deposits) and can trigger re-studies for other projects in the queue, increasing delays.

Note: Only includes data for entities that provide study phase for withdrawn projects and comprehensive status information (4 ISOs and 10 non-ISO balancing areas).
Duration Trends: How Long Do Projects Spend In the Queues?

Withdrawn Projects:
• Duration from Interconnection Request (IR) to Withdrawn Date
 • By region and generator type

All Projects:
• Duration from IR to Interconnection Agreement (IA)
 • By region, generator type, size, and service type

Operational Projects:
• Duration from IA to COD
 • By region and generator type
• Duration from IR to Commercial Operations Date (COD)
 • By region, generator type, and size

Note: The interconnection process diagram (right) reflects the pro-forma process under FERC Order No. 2023. While some ISOs already follow this cluster-study approach, the data presented in this report pre-date Order No. 2023 implementation.
The average duration from interconnection request to withdrawal date has edged upward in recent years

- This trend implies that some recently-withdrawn projects have waited longer in the queues before making the determination to withdraw
- This corroborates the findings on cumulative withdrawal rates and late-stage withdrawals illustrated on Slide 30
- Later stage withdrawals can be costly for developers and can disrupt assumptions built into other projects' interconnection studies, necessitating re-studies in some cases and lengthening study durations

Note on Boxplots: Many of the following slides utilize box and whisker plots. The boxes represent the interquartile range (IQR), with the central horizontal line being the median. Gray diamonds are the mean. Whiskers (vertical lines) are 1.5 times the IQR. Outliers are not shown.
Duration to withdrawal is trending up in several regions, and across technologies. A number of old Gas requests were withdrawn in Southern Co., NYISO, and PJM in 2023.

Notes: (1) Withdrawn date was available for 11,680 projects from 7 ISOs and 8 non-ISO balancing areas. (2) Duration is calculated as the number of months from the queue entry date to the date the project was withdrawn from queues.
Duration from interconnection request to interconnection agreement had increased recently, but moderated slightly in 2023 (note: 2023 data sample is dominated by ERCOT and West).

Notes: (1) The majority of the 2023 data sample for this analysis came from ERCOT (39%) and the West (23%), which typically have relatively shorter durations (see next slide); there were no 2023 IAs in PJM. (2) Sample includes 3,864 projects from 7 ISO/RTOs and 5 non-ISO balancing areas with executed interconnection agreements since 2005. (3) Not all data used in this analysis are publicly available.
IR to IA duration is typically longest in PJM (but no IAs were completed in PJM in 2023). ERCOT and the non-ISO regions (Southeast and West) have fastest processing times.

Notes: (1) Sample includes 3,864 projects from 7 ISO/RTOs and 5 non-ISO balancing areas with executed interconnection agreements since 2005. (2) Not all data used in this analysis are publicly available.
Wind projects typically face longer interconnection study timelines; recent battery and gas projects have been processed much more quickly.

Notes: (1) Sample includes 3,864 projects from 7 ISO/RTOs and 5 non-ISO balancing areas with executed interconnection agreements since 2005. (2) Not all data used in this analysis are publicly available.
There is a clear step change in IR to IA duration between “small” (<20 MW) and “large” (>20 MW) generator interconnection procedures

- On average, projects with rated capacity <20 MW complete studies and execute interconnection agreements much faster than larger projects
 - Median is 11 months for projects <5 MW
 - 18 months for projects 5 - <20 MW
- The median duration for projects 20 MW or larger hovers around 30 months across the four larger project groups analyzed
- 20 MW is the threshold between the FERC “large” and “small” generator interconnection procedures (LGIP / SGIP)
 - The median LGIP duration is twice the median SGIP duration for projects in our sample

Notes: (1) Sample includes 3,864 projects from 7 ISO/RTOs and 5 non-ISO balancing areas with executed interconnection agreements since 2005. (2) Not all data used in this analysis are publicly available.
Energy Resource Interconnection Service (ERIS) requests are not significantly faster to process than Network Resource Interconnection Service (NRIS) requests, though ERCOT requests are.

The mean IR-IA duration for ERIS requests submitted since 2010 (33.5 months) is not significantly shorter than that for NRIS requests (~34.2 months) ($p = 0.27$).

ERCOT – which is not FERC jurisdictional – utilizes a ‘connect and manage’ approach, which is similar to ERIS. But ERCOT requests are processed faster on average (~23.8 months) than ERIS requests in other regions since 2010 ($p < 0.001$).

Notes: (1) Sample includes 3,536 projects from 6 ISO/RTOs and 4 non-ISO balancing areas with executed interconnection agreements since 2005 that also provided service type information (2,894 since 2010). (2) Not all data used in this analysis are publicly available.
Typical duration from IA to commercial operations date (COD) has increased modestly; in some regions (e.g., CAISO and SPP), recent projects are facing substantial delays after securing an IA Interconnection Agreement (IA).

- Limited data were available to analyze typical durations from interconnection agreement to commercial operations.
- Considering 861 projects across 6 entities, the typical IA to COD duration has increased modestly since 2007.
- But, that duration has increased dramatically for CAISO projects in the last 5 years.
 - The typical solar project built in CAISO since 2018 took over 4 years to reach commercial operations after securing an interconnection agreement; those built in 2022 averaged over 6 years.

Notes: (1) Data were only available for 861 projects across 5 ISO/RTOs and one utility (Southern Company), out of 4,155 total “operational” projects in the full dataset. (2) Not all data used in this analysis are publicly available.
Moving from an executed IA to COD tends to take substantially longer in CAISO compared to other regions; standalone battery projects are quickest to complete this phase.

Notes: (1) Data were only available for 836 projects across 5 ISO/RTOs and one utility (Southern Company), out of 4,155 total "operational" projects in the full dataset. (2) Not all data used in this analysis are publicly available.
The median duration from interconnection request (IR) to commercial operations date (COD) continues to rise, approaching 5 years for projects completed in 2022-2023.

Notes: (1) In-service date was only available for 6 ISOs (CAISO, ERCOT, ISO-NE, NYISO, PJM, SPP) and 8 non-ISO BAs (Duke, FPL, LADWP, PSCo, SOC, SEC, SRP, TSGT) representing 61% of all operational projects. (2) Duration is calculated as the number of months from the queue entry date to the commercial operations date.
The request to operational timeline has been increasing in all regions; duration tends to be longest in CAISO, NYISO, and SPP and shortest in ISO-NE.

Notes: (1) In-service date was only available for 6 ISOs and 8 non-ISO BAs representing 61% of all operational projects; (2) Duration is calculated as the number of months from the queue entry date to the commercial operations date.
Wind projects typically take longer than other types to go from request date to commercial operations, with standalone battery projects moving fastest.

Notes: (1) In-service date was only available for 6 ISOs and 8 non-ISO BAs representing 61% of all operational projects; (2) Duration is calculated as the number of months from the queue entry date to the commercial operations date.
Larger projects have longer development timelines: The average IR to COD duration increases monotonically by project size (MW)

- For the smallest projects in our sample (<5 MW), the median project came online less than 2 years (20 months) after the interconnection request.
- The median 5-20 MW project, meanwhile, takes nearly 3 years (33 months) from IR to COD.
- Larger projects spend even more time in the interconnection and development process, with the median 100-200 MW project taking >4 years and the median 200+ MW project taking over 4.5 years (55 months) from IR to COD.

Notes: (1) Box-plot includes projects reaching commercial operations from 2010-2023. (2) Includes data from 6 ISOs and 8 non-ISO BAs representing 61% of all operational projects. (3) Duration is calculated as the number of months from the queue entry date to the commercial operations date.
As of the end of 2023, there were nearly 12,000 projects actively seeking grid interconnection across the U.S., representing 1,570 GW of generation and approximately 1,030 GW of storage.

- Solar (1,086 GW), storage (1,028 GW), and wind (366 GW) account for ~95% of all active capacity seeking transmission connection.
 - Over half of solar and storage capacity in the queues are from hybrid projects; Roughly 1/3 of wind capacity is for offshore projects.
 - Over 1,200 GW of generation and storage projects submitted interconnection requests after the passage of the IRA.

- The combined capacity of just solar and wind now active in the queues (>1,400 GW) exceeds the total installed U.S. power plant fleet capacity, and is greater than the estimated 1,100 GW needed to approach a zero-carbon electricity target.

- Capacity in queues is widespread across U.S. but some states dominate: Texas has 13% of solar, 14% of gas, 12% of storage, and 7% of wind; New York has 19% of wind (mostly offshore); California has 27% of storage, 12% of solar, and 8% of wind.

- Hybrids now comprise a large – and increasing – share of proposed projects, particularly in CAISO and the West. 571 GW of solar hybrids (primarily solar+battery) and 49 GW of wind hybrids are in the queues.

- Roughly half (1,271 GW) of the active capacity in the queues is proposed to come online before 2026, and 12% (311 GW) already has an executed interconnection agreement (IA).

- The time projects spend in queues before reaching COD is increasing. For the regions with available data, the median duration from IR to COD has doubled from <2 years for projects built in 2000-2007 to over 4 years for those built in 2018-2023.
 - The full interconnection process timeline (from IR to IA) has also increased, though moderated somewhat in 2023.
 - Larger projects have longer development timelines; interconnection study duration increases notably for projects >20 MW.

- Ultimately, much of this proposed capacity will not be built. Historically only ~19% of projects (and only 14% of capacity) requesting interconnection from 2000-2018 have reached commercial operations. As well, late-stage withdrawals may be on the rise.

- FERC Order 2023 is an important step toward addressing interconnection backlogs and bottlenecks. Additional operational and technical solutions like those outlined in i2X can further improve efficiency, reliability, and help meet decarbonization goals.

Notes: (1) Hybrid storage capacity is estimated using storage:generator ratios from projects that provide separate capacity data. (2) See https://gridlab.org/2035-report/ (3) Data for this analysis were available for six ISO/RTOs and eight non-ISO balancing areas.
DOE’s Transmission Interconnection Roadmap identifies 35 solutions to mitigate queue backlogs, focus on four interconnection goals

<table>
<thead>
<tr>
<th>Goal #1: Increase Data Access and Transparency</th>
<th>Goal #2: Improve Process and Timeline</th>
<th>Goal #3: Promote Economic Efficiency</th>
<th>Goal #4: Maintain a Reliable, Resilient, and Secure Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Highlight improvements that go beyond FERC Order 845 and 2023 to improve decision making</td>
<td>• Backlogs and delays result of rapid growth in requests and ineffective management</td>
<td>• Acknowledge that interconnection and transmission planning are closely related</td>
<td>• In recent years, there has been a series of disturbance events leading to IBR disconnection</td>
</tr>
<tr>
<td>• Facilitate screening, optimal siting, and automation</td>
<td>• Balance tradeoff between quantity of projects and maintaining competition</td>
<td>• Focus on both allocative efficiency (‘who pays’) and productive efficiency (‘minimizing costs’)</td>
<td>• Foundation to manage high penetration rates of IBRs and minimize disturbances</td>
</tr>
<tr>
<td>• Enhance equitable outcomes by enabling benchmarking, tracking, and auditing of processes and reform performance</td>
<td>• Provide interconnection opportunities for all</td>
<td>Key focus areas</td>
<td>Key focus areas</td>
</tr>
<tr>
<td></td>
<td>Queue Management</td>
<td>• Cost Allocation</td>
<td>• Interconnection Models and Tools</td>
</tr>
<tr>
<td></td>
<td>• Affected System Studies</td>
<td>• Planning Coordination</td>
<td>• Interconnection Standards</td>
</tr>
<tr>
<td></td>
<td>• Inclusive and fair process</td>
<td>• Interconnection Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Workforce Development</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final Roadmap coming soon. Full report provides detail of key solutions as well as identifying key target metrics that can be used to monitor the status of ongoing interconnection process reform. See https://www.energy.gov/eere/i2x for more information.
Contact:
Joseph Rand (jrand@lbl.gov)

More Information:
• Visit https://emp.lbl.gov/queues to download the data used for this analysis and access an interactive data visualization tool
• Visit https://emp.lbl.gov/interconnection_costs for related research on interconnection costs

Acknowledgements:
This work was funded by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, in particular the Solar Energy Technologies Office and the Wind Energy Technologies, in part via the Interconnection Innovation eXchange (i2X). We thank Michele Boyd, Ammar Qusaibaty, Dexter Hendricks, Cynthia Bothwell, Jian Fu, Patrick Gilman, Gage Reber, and Paul Spitsen for supporting this project.

Disclaimer
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

Copyright Notice
This manuscript has been authored by an author at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy. The U.S. Government retains, and the publisher, by accepting the article for publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.
Balancing Areas Included In Data:

<table>
<thead>
<tr>
<th>ISO/RTOs</th>
<th>Southeast (non-ISO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO</td>
<td>Associated Electric Coop.</td>
</tr>
<tr>
<td>ERCOT</td>
<td>Dominion</td>
</tr>
<tr>
<td>ISO-NE</td>
<td>Duke Carolinas</td>
</tr>
<tr>
<td>MISO</td>
<td>Duke Florida</td>
</tr>
<tr>
<td>NYISO</td>
<td>Duke Progress</td>
</tr>
<tr>
<td>PJM</td>
<td>Duke/Progress</td>
</tr>
<tr>
<td>SPP</td>
<td>Florida Municipal Power Pool</td>
</tr>
<tr>
<td></td>
<td>Florida Power & Light</td>
</tr>
<tr>
<td>West (non-ISO)</td>
<td></td>
</tr>
<tr>
<td>Arizona Public Service</td>
<td>Imperial Irrigation District</td>
</tr>
<tr>
<td>Avista</td>
<td>L.A. Dept. Water & Power</td>
</tr>
<tr>
<td>Black Hills Colorado</td>
<td>Navajo-Crystal</td>
</tr>
<tr>
<td>Bonneville Power Admin.</td>
<td>NorthWestern</td>
</tr>
<tr>
<td>Cheyenne Light Fuel & Power</td>
<td>NV Energy</td>
</tr>
<tr>
<td>El Paso Electric</td>
<td>PacifiCorp</td>
</tr>
<tr>
<td>Grant PUD</td>
<td>Platte River Power Authority</td>
</tr>
<tr>
<td>Idaho Power</td>
<td>Portland General Electric</td>
</tr>
</tbody>
</table>
Clean energy has ballooned in many regions’ queues after the passage of the Inflation Reduction Act (IRA), which likely spurred additional development interest.
Active solar capacity in queues: by county

Notes: (1) Includes “active” interconnection requests only. (2) County was missing or could not be determined for 2.7% of active solar requests. (3) Transmission line data from Hitachi Velocity Suite. (4) See https://emp.lbl.gov/queues to access an interactive data visualization of these maps.
Active standalone storage capacity in queues: by county

Notes: (1) Excludes hybrid storage capacity, which could not be estimated at the county-level. (2) Includes “active” interconnection requests only. (3) County was missing or could not be determined for 2% of active standalone storage requests. (4) Transmission line data from Hitachi Velocity Suite. (5) See https://emp.lbl.gov/queues to access an interactive data visualization of these maps.
Active wind capacity in queues: by county

Notes: (1) Includes “active” interconnection requests only. (2) County was missing or could not be determined for 2.8% of land-based wind requests, and 16.1% of offshore wind requests. (3) Transmission line data from Hitachi Velocity Suite. (4) See https://emp.lbl.gov/queues to access an interactive data visualization of these maps.
Active gas capacity in queues: by county

Notes: (1) Includes “active” interconnection requests only. (2) County was missing or could not be determined for 7.3% of active gas requests. (3) Transmission line data from Hitachi Velocity Suite. (4) See https://emp.lbl.gov/queues to access an interactive data visualization of these maps.
Total active capacity in queues: by county

Notes: (1) Includes “active” interconnection requests only. (2) County was missing or could not be determined for 6% of all active requests. (3) Transmission line data from Hitachi Velocity Suite. (4) See https://emp.lbl.gov/queues to access an interactive data visualization of these maps.
ISO-NE and ERCOT have consistently had higher completion rates than other regions; CAISO has been consistently lower.

Note: (1) Completion rate shown here is calculated by number of projects online by end of 2023, not capacity-weighted. (2) Calculated as number of projects operational as of EOY 2023 divided by the total number of requests per year. (3) Includes data from 7 ISOs and 30 non-ISO BAs.