
NARUC Webinar
March 15, 2012

Roger Levy, Levy Associates
Lead Consultant,
Smart Grid Technical Advisory Project

Karen Herter
Herter Energy Research Solutions

Chuck Goldman, Staff Scientist
Electricity Markets and Policy Group
Lawrence Berkeley National Laboratory
Is there a customer engagement problem?

- "...the inauguration of smart meters with grudging and involuntary exposure of millions to billions of human beings to pulsed microwave radiation should immediately be prohibited..."

- “Smart meters have no value to the customer and the customer knows that”. (19)

- “The general public has no idea how much they pay for electricity or how to use less, undermining the central premise of smart meters and hindering their adoption”.(20)

- “..most people do not know what devices in the home consume the most or least energy, and they do not understand their electricity bill.”(21)

- “…people have absolutely no clue how to go about saving energy as a result, most of their actions are not geared toward long-term, sustainable actions to lower their energy footprint."(22)
1. What is “data access” and how can it be structured to provide the “feedback” to support short and long-term changes in customer energy usage?

2. What guidance does prior research or experience provide in answering this first question?
What is Customer Data Access?

The Purpose of Customer Data Access is to Provide Feedback

“… feedback is proving a critical first step in engaging and empowering consumers to thoughtfully manage their energy resources.”

“Feedback ….making energy more visible and more amenable to understanding and control.”
Why is Customer Data Access Important?

Customer education and engagement is critical to achieve smart grid efficiency, demand response, and renewable integration benefits.

- Prior research and existing pilots emphasize short-term behavior change by focusing on meter data access and in-home displays.
- Feedback to address the long-term infrastructure changes and investment necessary to make major, permanent changes in usage is not being addressed.
- The emphasis on short-term feedback creates unreasonable expectations and misdirects policy regarding hardware investment and customer education.
In home displays (IHD’s) are the most important vehicle for providing customers with data access.

Studies show that customers with IHD’s have been shown to reduce energy use 5% to 15%.

Residential customers with access to near real-time meter data reduce usage more than customers with next day access.

Studies have shown that the rate, bill design, and frequency of billing influence IHD impacts.
Myth vs. Fact

In home displays (IHD’s) are the most important vehicle for providing customers with data access.

We are not aware of any studies that have examined this issue.

Studies show that customers with IHD’s have been shown to reduce energy use 5% to 15%.

Residential customers with access to near real-time meter data reduce usage more than customers with next day access.

Studies have shown that the rate, bill design, and frequency of billing influence IHD impacts.
In home displays (IHD’s) are the most important vehicle for providing customers with data access.

We are not aware of any studies that have examined this issue.

Studies show that customers with IHD’s have been shown to reduce energy use 5% to 15%.

Multiple studies report this finding, however with few exceptions, most research is short-term and anecdotal.

Residential customers with access to near real-time meter data reduce usage more than customers with next day access.

Studies have shown that the rate, bill design, and frequency of billing influence IHD impacts.
Myth vs. Fact

In home displays (IHD’s) are the most important vehicle for providing customers with data access. We are not aware of any studies that have examined this issue.

Studies show that customers with IHD’s have been shown to reduce energy use 5% to 15%. Multiple studies report this finding, however with few exceptions, most research is short-term and anecdotal.

Residential customers with access to near real-time meter data reduce usage more than customers with next day access. Few studies and questionable results.

 Studies have shown that the rate, bill design, and frequency of billing influence IHD impacts.
Myth vs. Fact

<table>
<thead>
<tr>
<th>Myth</th>
<th>Fact</th>
</tr>
</thead>
<tbody>
<tr>
<td>In home displays (IHD’s) are the most important vehicle for providing customers with data access.</td>
<td>We are not aware of any studies that have examined this issue.</td>
</tr>
<tr>
<td>Studies show that customers with IHD’s have been shown to reduce energy use 5% to 15%.</td>
<td>Multiple studies report this finding, however with few exceptions, most research is short-term and anecdotal.</td>
</tr>
<tr>
<td>Residential customers with access to near real-time meter data reduce usage more than customers with next day access.</td>
<td>Few studies and questionable results.</td>
</tr>
<tr>
<td>Studies have shown that the rate, bill design, and frequency of billing influence IHD impacts.</td>
<td>Most studies ignore these variables.</td>
</tr>
</tbody>
</table>
Feedback Expectations

IHD’s are the Solution

“The research literature shows that in-home displays ...achieving savings in the range of 5–15%...”

Consumers could cut their household electricity use as much as 12 percent ...if U.S. utilities use feedback tools...

IHD’s are not the Solution

“The results show that the initial savings in of 7.8% after 4 months could not be sustained in the medium- to long-term. "

Real time monitors “may not be suitable tools to decrease consumption unless homeowners are presented with more information on how to conserve or a cost incentive such as TOU pricing.”
Feedback: Four Stages

- **Data.** “A behavior must be measured, captured, and stored. “

- **Relevance.** “The information must be relayed to the individual, not in the raw-data form in which it was captured but in a context that makes it emotionally resonant. “

- **Consequence.** “The information must illuminate one or more paths ahead. “

- **Action.** “There must be a clear moment when the individual can recalibrate a behavior, make a choice, and act. “

Key Question:
What approaches provide the content consistent with this framework?
1. What information influences customer energy usage?

2. What does the research tell us?
 a) Research studies
 b) Ongoing pilots
1. What information influences customer energy usage
What are you trying to accomplish?

Customer Feedback Policy Objectives

Behavior Change
- Program thermostat
- Turn off lights
- Shorter showers
- Fewer wash loads
- Unplug electronics

Adaptation
- Plant shade trees
- Weather strip
- Install CFL lights
- Install timers
- Programmable Thermostat options

Infrastructure Change
- High-efficiency appliances
- Replace windows
- Insulate walls
- Insulate ceilings
- Install Solar PV

Short–term, low cost, quick decisions, real-time feedback.
Near–term, medium cost, lengthy decisions, multiple info sources.
Long–term, high cost, protracted decisions, multiple info sources.

Price Automation Subsidies, Incentives
Life in Years*

<table>
<thead>
<tr>
<th>Component</th>
<th>Life in Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dishwasher</td>
<td>9</td>
</tr>
<tr>
<td>Dryer, Electric</td>
<td>13</td>
</tr>
<tr>
<td>Freezer</td>
<td>11</td>
</tr>
<tr>
<td>Microwave Oven</td>
<td>9</td>
</tr>
<tr>
<td>Range, Electric</td>
<td>13</td>
</tr>
<tr>
<td>Refrigerator, Standard</td>
<td>13</td>
</tr>
<tr>
<td>Washer</td>
<td>10</td>
</tr>
<tr>
<td>Water Heater, Electric</td>
<td>11</td>
</tr>
<tr>
<td>Air Conditioner, Room</td>
<td>10</td>
</tr>
<tr>
<td>Air Conditioner, Central</td>
<td>15</td>
</tr>
<tr>
<td>Heat Pump</td>
<td>16</td>
</tr>
</tbody>
</table>

What are the research options?

* Figure 1. Information Options, DOE Smart Grid Investment Grant, Technical Advisory Group Guidance Document #2, Non-Rate Treatments in Consumer Behavior Study Designs, August 6, 2010.
What do customers need?

Customers have to understand how they use energy before they can make rational decisions to improve efficiency and change their usage patterns.

1. **What information do customers need to make rational energy decisions?**

2. **Which behavioral and infrastructure decisions best support the consumer value function?**

3. **What is the best form and medium to present the information to support these decisions?**

4/25/2012

LBNL Smart Grid Technical Advisory Project
What to Measure

- **What to measure** – electricity, gas, water, carbon?
- **What level of measurement** – whole house or end-use?
- **What type of measurement** – real-time, near real-time, actual data, historical data, or social normative
- **What capability** – monitoring only or management too?
- **What medium** – stand alone, web, PC/phone applications?
- **What time frame** – days, months, years?
- **What information** – energy, demand, price, cost, technology availability, saving measures, other?
EPRI: Customer Information Continuum

EPRI Feedback Delivery Mechanism Spectrum

1. Standard Billing
 - monthly, bi-monthly
2. Enhanced Billing
 - Info and advice, household specific
3. Estimated Feedback
 - Web-based audits, billing analysis, appliance disaggregation
4. Daily/Weekly Feedback
 - Usage measurements by mail, email, self-metered
5. Real-time Feedback
 - In home displays, pricing signal
6. Real-time Plus
 - HANs, appliance disaggregation, control

“Indirect” Feedback (provided after usage)

“Direct Feedback – (provided during usage)

Information availability

Cost to implement

Low

4/25/2012

LBNL Smart Grid Technical Advisory Project

20
EPRI: Customer Information Continuum

EPRI Feedback Delivery Mechanism Spectrum

1. Standard Billing
 - monthly, bi-monthly

2. Enhanced Billing
 - Info and advice, household specific

3. Estimated Feedback
 - Web-based audits, billing analysis, appliance disaggregation

4. Daily/Weekly Feedback
 - Usage measurements by mail, email, self-metered

5. Real-time Feedback
 - In home displays, pricing signal

6. Real-time Plus
 - HANs, appliance disaggregation, control

"Indirect" Feedback (provided after usage)
Long-term - historical and comparative

Action Items
Social Media
Goals (Benchmarks)
Scenario Analysis
Rate Options

Online modeling, Instructional videos, Worksheets

“Direct Feedback – (provided during usage)
Short-term - current

Control Signals
Price, Event Signals
Digital Machine-to-Machine
2. What does the research tell us?

- Meta studies
- Utility pilots
Key Meta Studies

- **ACEEE** – Advanced Metering Initiatives and Residential Feedback Programs: A Meta-Review for Household Electricity Saving Opportunities (2010). *

- **Fischer**: Historical Feedback Studies

- **VaasaETT [Empower Demand]** - The potential of smart meter enabled programs to increase energy and system efficiency: a mass pilot comparison (2011)

- **Brattle**: Recent Feedback Studies

* See Reference #24 for updated ACEEE review of real-time feedback studies, February 2012.
“…one shortcoming of some past research is it does not impose sufficient structure on the initial sample design to test for differences in feedback effect among customers with different housing, demographic, and electricity pricing circumstances.”

Figure 3-1. Range of study participation levels
ACEEE: Feedback Effectiveness

ACEEE Meta Review

Average Household Electricity Savings (4-12%) by Feedback Type

- Enhanced Billing: 3.8%
 - Householdspecific info, advice
- Estimated Feedback: 6.8%
 - Web-based energy audits with info on ongoing basis
- Daily/Weekly Feedback: 8.4%
 - Household-specific info, advise on daily or weekly basis
- Real-Time Feedback: 9.2%
 - Real-time premise level info
- Real-Time Plus Feedback: 12.0%
 - Real-time info down to the appliance level

Based on 36 studies implemented between 1995-2010

“..these estimates are dominated by studies with small sample sizes and short duration: further studies with large sample sizes and longer duration are needed before conclusions can be drawn.”

4/25/2012
LBNL Smart Grid Technical Advisory Project
What do we know about measured savings from feedback studies?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20%+</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>20% peak</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>15-19%</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>10-14%</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>5-9%</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>0-4%</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>unknown</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Fischer: Historical Feedback Studies

Average savings across selected studies

Differences to control group (percentage points)
Table 12. Duration of IHD pilots and energy conservation.

<table>
<thead>
<tr>
<th>Feedback Pilot Type</th>
<th>Energy Conservation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHD (n=30)</td>
<td>8.68%</td>
</tr>
<tr>
<td>Other (n=14)</td>
<td>6.00%</td>
</tr>
<tr>
<td>Detailed Invoice (n=23)</td>
<td>5.94%</td>
</tr>
<tr>
<td>Webpage (n=7)</td>
<td>5.13%</td>
</tr>
</tbody>
</table>

Figure 4. Overall consumption reduction as per feedback pilot type.

Length of Trial:
- 1-6 months (n=11): 6%
- 7-12 months (n=8): 11%
- >12 months (n=11): 9%
Brattle: Recent Feedback Studies

<table>
<thead>
<tr>
<th>Conservation Impact (%)</th>
<th>IHD-Only Impacts</th>
<th>IHD and Prepayment Impacts</th>
<th>IHD and Time-Varying Rates Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Newfoundland Power
- Hydro One TOU 1
- Hydro One RTM
- BC Hydro
- Woodstock Hydro
- SRP
- County Energy
- Hydro One TOU 2

LBNL Smart Grid Technical Advisory Project

4/25/2012
Customers who actively used an IHD in the pilots reduced their electricity consumption by about 7%.

When customers both used an IHD and were on some type of electricity pre-payment system, they reduced their electricity consumption by about 14%.
Key Pilot Research Studies

- ARRA Consumer Behavior Pilots (In process)
- Commonwealth Edison
- Oklahoma Gas & Electric
- SMUD Residential Information and Controls
DOE-SGIG Consumer Behavior Pilots

150,000 customers are expected to “participate” as treatment or control customers in ~10 DOE SGIG-funded projects involving AMI, dynamic pricing and consumer behavior studies.

<table>
<thead>
<tr>
<th>Rate Treatments</th>
<th>Sierra Nevada Power OG&E MMLD CVPS VEC MN Power CIC SMUD DECo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOU</td>
<td>●</td>
<td>3</td>
</tr>
<tr>
<td>CPP</td>
<td>● ● ● ● ● ● ● ●</td>
<td>8</td>
</tr>
<tr>
<td>CPR</td>
<td>●</td>
<td>2</td>
</tr>
<tr>
<td>VPP</td>
<td>●</td>
<td>2</td>
</tr>
<tr>
<td>Non-Rate Treatments</td>
<td>Education</td>
<td>●</td>
</tr>
<tr>
<td>PCT</td>
<td>●</td>
<td>3</td>
</tr>
<tr>
<td>DLC</td>
<td>●</td>
<td>1</td>
</tr>
<tr>
<td>Features</td>
<td>Bill Protection</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td></td>
<td>Opt Out</td>
<td>● ●</td>
</tr>
</tbody>
</table>

LBNL Smart Grid Technical Advisory Project
Table 4-1. Acquisition and Implementation of Free and Purchased Technology

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer</td>
<td>Acquire</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Customers Provided with Free IHD’s</td>
<td></td>
</tr>
<tr>
<td>L5. Basic IHD</td>
<td>485</td>
</tr>
<tr>
<td>L6. Advanced IHD</td>
<td>205</td>
</tr>
<tr>
<td>Customers Given Option to Purchase IHD’s</td>
<td></td>
</tr>
<tr>
<td>L5b. Basic IHD</td>
<td>211</td>
</tr>
<tr>
<td>L6b. Advanced IHD</td>
<td>205</td>
</tr>
</tbody>
</table>

Notes:
- Basic IHD: linked to meter, continuous usage with historical comparison
- Advanced IHD: combines usage data with access to data via internet, also combined with PCT, not fully described.
- For row L5 the 34% represents the number of customers provided free IHD’s that actually installed and initialized the device. For row L5b, only 2% (5/211) of the customers chose to purchase an IHD and then only 80% (4/5) of those were installed. IHD usage
OG&E: 2010 Demand Response Study

Weekdays

- TOU-CP
- VPP-CP Low
- VPP-CP Med
- VPP-CP High

- Pre-assigned cells
- Online self-enrollment
- Best Bill Guarantee

Conservation Impact (%)

- PCT Only: 29.9%, 29.2%, 32.6%
- IHD Only: 16.5%, 11.1%, 10.6%
- Web Only: 10.9%, 3.7%, 8.3%
- PCT, IHD, Web: 26.2%, 25.6%, 28.3%
What are the issues and limitations

- Feedback study impacts are oversold, creating unrealistic expectations
- Pilots focus on IHD hardware rather than information
- Rate design and pricing are ignored but essential for creating a customer value function
- Billing information is needed to reinforce the value function
- IHD’s support short-term behavior change, not long-term infrastructure change
- Research is searching for a single solution where the market will probably require a dynamic mix of multiple treatments over extended time frames.
What policies should you consider?

Behavioral Change
- Data Access
- Understandable Rates
- Dispatchable Prices
- Clear Bills
- Privacy

Adaptation
- Evaluation Tools
- Rebates
- Open Markets for Technology
- Standards

Infrastructure Change
- Building Standards
- Appliance Standards
- Financial Incentives
- Rate simplification and stability
- Billing clarity and customization
3. SMUD Residential Information and Controls Study

Project Design

Karen Herter, Ph.D.
Research Team and Funding

• Research Team
 – Herter Energy Research Solutions
 – Sacramento Municipal Utility District (SMUD)

• Funding
 – Sacramento Municipal Utility District (SMUD)
 – California Energy Commission Public Interest Energy Research via the Demand Response Research Center at Lawrence Berkeley Lab
Study Goals

- Build on what we already know
 - *TOU rates* are effective for shifting load every day
 - *Dynamic rates* are effective for shedding load during events
 - *Thermostat automation* enhances both of these effects

- Answer some new questions
 - Does real-time energy data enhance energy and/or peak savings?
 - Is there added value in providing real-time appliance energy data?

- **Combine** rates, automation, real-time data and enhanced customer support to...
 - capture synergies between program variables
 - provide as realistic an experience as possible
 - define results that can be translated to the real world
What we already know

Results of residential pricing studies in Ontario, California, Puget Sound, Florida, Australia, Illinois, Missouri, New Jersey, Maryland, Connecticut, Washington DC

Q: Might real-time data from new smart meters provide additional value?
Residential Information & Controls Study

- Phase 1: 2009 Simulation Research
 - 450+ SMUD participants
 - Simulated home environment w/ TOU-CPP rate
 - Findings
 - Home data: No savings
 - Appliance data: 6% savings

- Phase 2: 2012 Summer Solutions Pilot
 - 265 residential SMUD participants
 - Equipment installations in Sacramento and Folsom
 - Treatments
 - Real-time data: Home vs. Appliance
 - Incentives: Dynamic rate vs. Load control
Research Design

N=265 residential customers

A. Information Treatments - randomly assigned

A. Baseline (88)

B. Home Data (89)

C. Appliance Data (88)

B. Dynamic Rate and AC Load Control - customer chosen

Neither (49)

Control only (81)

Rate only (44)

Rate + Control (91)
Research Design

N=265 residential customers

A. Information Treatments - randomly assigned

- A. Baseline (88)
- B. Home Data (89)
- C. Appliance Data (88)

B. Dynamic Rate and AC Load Control - customer chosen

- Control only (81)
- Rate only (44)
- Rate + Control (91)
- Neither (49)
Information System A - Baseline

Communicating Thermostat

Gateway provides OpenADR event notification
Information System B – Home data

Communicating Thermostat with Energy Information Display

Whole-house sub-meter

Zwave

Gateway with Information Display via Computer

RCS
Information System C – Appliance data

Site Data

Whole-house sub-meter

Communicating Thermostat with Energy Information Display

RCS

Data Storage & Presentation

Appliance Data

HVAC sub-meter

Zwave

Gateway with Information Display via Computer

Zwave

220V sub-meter

Zwave

Internet

110V sub-meter

Zwave

LBNL Smart Grid Technical Advisory Project
User Interface (Appliance data)

Current Bill Cycle Cost: $65.54

VIEW

- Current Bill Cycle
- Cost
- Usage
- Whole House
- TV
- Computer
- Subpanel EM52
- TZ43 Node 27
- Budget
- Phantom Power
- Temperature

CURRENT CONDITIONS
Rancho Cordova, CA
Thursday 6/23/2011
User Interface (Appliance data)

Current Use: 0.95 kW
Current Rate: 0.95 kW
Summer Solutions Base Plus: 14.1 c per kWh
Projected Cost This Month: $224.24
Event Status: None

Relative Load Now:

- TV: 0.03 kW
- Computer: 0 kW
- Subpanel EM52: 0.50 kW
- TZ43 Node 27: 0.01 kW
- Other: 0.41 kW

Current Conditions:
- Sunny
- 92°
- 78° indoors

Rancho Cordova, CA
Thursday 8/23/2011
Research Design

N=265 residential customers

A. Information Treatments - randomly assigned

A. Baseline (88)
 - B. Home Data (89)
 - C. Appliance Data (88)

B. Dynamic Rate and AC Load Control - customer chosen

Neither (49)
 - Control only (81)
 - Rate only (44)
 - Rate + Control (91)
Recruitment – Program Choices

...of customers offered a dynamic Rate and/or AC Control

- **Rate**
 - TOU-CPP rate, a.k.a. the “Summer Solutions rate”
 - Customer determines response to high-price events
 - 12 events

- **Control**
 - 4° set point raise during events
 - One override allowed
 - Same 12 events as TOU-CPP rate

All participants receive one of the three randomly assigned equipment configurations, no matter their program choices

N=238
Optional TOU-CPP Rate

SMUD Summer Solutions Rate

- **Events**
 - 75¢
 - 12 days per summer

- **On Peak**
 - 27¢
 - Weekdays only

- **Off Peak**
 - 14.11¢ > 700 kWh
 - 7.21¢ < 700 kWh

Price per kWh

4/25/2012
Hypotheses

• For all participants
 ▪ Energy use is lower
 ▪ Weekday peak demand is lower
 ▪ Peak demand on event days is lower
 ▪ Electricity bills are lower

• Savings are better for customers:
 ▪ (a) with more information
 ▪ (b) who chose more program options
 ▪ (c) on the dynamic rate, compared to direct load control
 ▪ (d) with higher energy use
 ▪ (e) with certain self-reported behaviors
 ▪ (f) with certain dwelling characteristics
 ▪ (g) with certain demographic characteristics
 ▪ (h) with higher satisfaction levels
Field Test & Findings
Field Study: Education and Outreach

- Installers assisted with thermostat settings
 - Encouraged all participants to automate response to critical events
- Quick Start Guide and equipment user guides
- Websites with information, tips, discussion board
- On-site energy assessments with personalized recommendations
- Summer Solutions Rate magnet
- SS rate vs. Standard bill comparison
- 24-hour advance notification of events
 - via email, thermostats, text message, phone
Events - Overview

- Twelve events from July to September
- Notify Participants
 - Email – including recommendations for participant action
 - Thermostat display – blinking light and message
 - Computer energy display – ACTIVE event status displayed
 - Special requests: Phone calls or text message
- Notify Equipment
 - OpenADR to gateway
 - ZWave from gateway to thermostat
 - Thermostat initiates Automatic Temperature Control (4° F) or customer-programmed response to events
2011 Temperatures and Events
Load Impacts - 100° day

- 2010 Weekday (weather-corrected baseline)
- 2011 Non-Event Weekday
- 2011 Event

Daily weekday impact

Avg. kW per participant

Hour

0.0
0.5
1.0
1.5
2.0
2.5
3.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

4/25/2012

LBNL Smart Grid Technical Advisory Project
Information Effects

Values in bold indicate a statistically significant difference from “Baseline information”
Rate and Control Effects

Values in bold indicate a statistically significant difference from “Neither option”
Billing Impacts

Note: These bill savings are in addition to those associated with energy savings.
Customer Satisfaction

- 86% = Excellent or Good
 - All groups were equally satisfied
- 90% signed up again for Summer Solutions 2012
 - 5% dropped out, 5% unreachable
Hypotheses

• For all participants
 ▪ Energy use is lower: **YES**
 ▪ Weekday peak demand is lower: **YES**
 ▪ Peak demand on event days is lower: **YES**
 ▪ Electricity bills are lower: **YES**

• Savings are better for customers:
 ▪ (a) with more information: **MIXED**
 ▪ (b) who chose more program options: **YES**
 ▪ (c) on the dynamic rate, compared to direct load control: **YES**
 ▪ (d) with higher energy use: **YES**
 ▪ (e) with certain self-reported behaviors: **YES** (pre-cooling, peak offset)
 ▪ (f) with certain dwelling characteristics: **YES** (swimming pools)
 ▪ (g) with certain demographic characteristics: **NO** (age, education, income)
 ▪ (h) with higher satisfaction levels: **MIXED** (no savings for dropouts)
Recommendations

1) Dynamic Rate + Advanced Thermostat
 - Offer at least one dynamic rate option, e.g. TOU-CPP
 - Display rate and event status on thermostat
 - Allow customers to automate precooling + peak offsets
 - Real-time energy data nice, but not necessary

2) Enhanced Customer Service
 - Educated customer support staff
 - Free home energy assessments for participants
 - Rate calculator with scenario testing
<table>
<thead>
<tr>
<th>Title</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Link</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Feedback on household electricity consumption: a tool for saving</td>
<td>http://www.mendeley.com/research/feedback-household-electricity-</td>
</tr>
<tr>
<td>feedback systems, Carnegie Mellon University, August 2010</td>
<td></td>
</tr>
<tr>
<td>U.S. Department of Energy Smart Grid Investment Grant Technical</td>
<td>http://www.smartgrid.gov/sites/default/files/pdfs/cbs-guidance-doc2-</td>
</tr>
<tr>
<td>Advisory Group Guidance Document #2, Non-Rate Treatments in</td>
<td>cbsp-outline.pdf</td>
</tr>
<tr>
<td>Consumer Behavior Study Designs, August 6, 2010.</td>
<td></td>
</tr>
<tr>
<td>Survey of the Experimental Evidence, The Brattle Group, May 20, 2009</td>
<td></td>
</tr>
</tbody>
</table>
References - 3

<table>
<thead>
<tr>
<th>Title</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 The Impact of In-Home Displays on Energy Consumption, Colorado Public Service Commission, A. Faruqui, S.Serguci, June 7, 2010</td>
<td>http://www.dora.state.co.us/puc/presentations/InformationMeetings/SmartGrid/06-07-10CM_Smart-Grid_ImpactIn-homeDisplays(Brattle%20Group).pdf</td>
</tr>
<tr>
<td>18 Olle Johansson, PhD, Department of Neuroscience, Karolinska Institute (Sweden)</td>
<td>http://www.facebook.com/SmartMeterRevolt#!/SmartMeterRevolt?v=info#info_edit_sections</td>
</tr>
<tr>
<td>Reference</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>24</td>
<td>Results from Recent Real-Time Feedback Studies, Report Number B122, ACEEE, B.Foster, S.Mazur-Stommen, February 2012</td>
</tr>
</tbody>
</table>
Contact Information

- Chuck Goldman
 Lawrence Berkeley National Laboratory
 CAGoldman@lbl.gov
 510 486-4637

- Roger Levy
 Smart Grid Technical Advisory Project
 RogerL47@aol.com
 916 487-0227

- Karen Herter
 Herter Energy Research Solutions
 www.HerterEnergy.com
 916-397-0101