Disaggregating Future Retail Electricity Rate Growth

Peter Cappers, Sydney Forrester, and Andrew Satchwell
Public Webinar
September 23, 2021

This work was funded by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy’s Strategic Analysis Team under Contract No. DE-AC02-05CH11231.
How much will retail electricity rates grow over the next 10 years and what will drive future changes?

Context
- The retail rate impacts of a number of emerging trends (e.g., rapid deployment of EVs and storage, transmission build-out for large-scale renewables deployment, and grid modernization) are unknown.
- Decision-makers are concerned about the potential future rate impacts on energy affordability and equity.

Prior work
- Recent Berkeley Lab research found wholesale price reductions but modest retail rate increases over the past 10 years due, in part, to large increases in capital expenditures (CapEx). Results were reported on average across a large number of utilities and based on historical data.
- Prior research estimating future rate growth can be organized into three approaches: (1) specific policies and their consequent retail rate impacts; (2) system cost and load modeling without disaggregation of drivers; and (3) utility-specific IRPs with heterogeneous modeling methods and data access (that make it hard to generalize beyond their territory). All approaches lack a more robust and nuanced understanding of the key drivers of retail rates, specifically their interactions and uncertainty of future growth.

Scope
- Explore how the variability and contributions of individual retail rate drivers affect future retail rate growth (10-year time horizon).
Approach and key assumptions

- Characterize a generic investor-owned and vertically-integrated electric utility representing average costs.
- All major cost categories represented as first year values with range of compound annual growth rates (CAGRs) to characterize variability.
 - No line-item generation CapEx and no explicit generation portfolio.
 - CAGR ranges based on historical FERC Form 1 (FF1) analysis results, but altered when there is compelling literature to support different future growth rates.
- Retail sales, peak demand, and customer counts represented at utility level.
 - Annual utility electricity retail sales level is based on starting year value that grows by a CAGR.
 - Use-per-customer and system load factor held constant throughout analysis period.
 - Annual system load shape is scaled up to match annual utility electricity retail sales to produce an hourly system load curve.
 - Coincident peak demand level set annually based on maximum value from system load curve.
- Rate design is purely a volumetric energy rate (¢/kWh).
 - Results focus exclusively on all-in volumetric energy rate based on annual general rate case (GRC) with current test year and no regulatory lag (i.e., perfect cost recovery).
 - Research is, therefore, not focused on earnings, return on equity (ROE), or other issues associated with cost recovery.
Our analytical assumptions do not account for all factors contributing to the growth in retail electricity rates

Our rate projections assume...
- Perfect cost recovery and no regulatory process or ratemaking features
- No optimization of least cost revenue requirement or minimum system costs
- All utility costs are included in the revenue requirement
- Rate driver growth ranges are informed by long-run historical trends for large sample of utilities

Actual rates are impacted by...
- Infrequent rate cases, historic test years, and regulatory lag for implementation of new rates
- Incremental system costs scaled to meet incremental load (e.g., “used and useful” requirement)
- Exclusion and/or disallowance of certain costs through regulatory decisions
- More recent historic or current costs and that reflect locational characteristics

Implications for our results...
- Should have little to no effect on contribution of individual rate drivers
- Contributions of individual rate drivers and their relative size may be over- or under-estimated depending on regional- or utility-specific conditions

Rate driver growth ranges are informed by long-run historical trends for large sample of utilities.

Incremental system costs are scaled to meet incremental load (e.g., “used and useful” requirement).

Exclusion and/or disallowance of certain costs through regulatory decisions.

More recent historic or current costs and that reflect locational characteristics.
Three types of analysis to understand the contribution, uncertainty, and variability of rate drivers

Deterministic
- Use Medium CAGRs for all rate driver inputs

Uncertainty in isolation
- Use random draws from triangular distribution of CAGRs (i.e., Low, Medium, and High) for each rate driver input with all others held at Medium CAGR

Joint uncertainty
- Use random draws from triangular distributions of CAGRs for all rate driver inputs jointly based on historical correlations
We include all major cost- and non-cost-related drivers of retail rates in the analysis.

Cost-Related Rate Drivers
- Fuel and Purchased Power (FPP)
- Generation Non-fuel O&M* (Gen O&M)
- Transmission Non-fuel O&M (Tx O&M)
- Distribution Non-fuel O&M (Dx O&M)
- Other Non-fuel O&M (Other O&M)
- Generation CapEx (Gen CapEx)
- Transmission CapEx (Tx CapEx)
- Distribution CapEx (Dx CapEx)
- Other CapEx
- Retail Sales (Sales)

Non-Cost-Related Rate Drivers
- Peak Demand (CP)
- Customers (Cust)

* O&M = Operations and Maintenance
Low, Medium, and High rate driver growth rate assumptions

*We assume no change in utility load factor and use-per-customer, therefore, sales, CP, and customers grow at the same annual rate.
Breaking out retail rates into component pieces

- In order to understand what is driving the overall retail rate growth between 2020 and 2030, we disaggregate the full retail rate into components.

- This is possible for all cost-related drivers (numerator in the retail rate calculation):
 - Depreciation, debt service cost, equity return, and tax expenses can be disaggregated into Gen, Tx, Dx, and Other CapEx costs.
 - By dividing each annual value by retail sales, we can derive a rate component for Gen, Tx, Dx, and Other CapEx, respectively.

- Non-cost related drivers produce impacts on both cost-related rate drivers (numerator) and retail sales (denominator); so we elected to not depict the impact of non-cost related drivers on retail rate components as it is not directly comparable to cost-related drivers.

![Rate Components Diagram]

<table>
<thead>
<tr>
<th>Rate Components</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Other CapEx ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dx CapEx ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx CapEx ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen CapEx ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other O&M ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dx O&M ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx O&M ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen O&M ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPP ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ Cost-Related Drivers ($)</td>
<td>Retail Sales (kWh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail Rate ($/kWh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What rate components contribute the most to future retail rate growth?
Assuming medium CAGR for all drivers, CapEx costs drive increases in retail rate growth

Future retail rate growth is driven by sizable increases in all CapEx costs offset by modest FPP cost reductions
As a result, Gen CapEx is the largest rate component in 2030.

The largest component of rates goes from FPP (27% of total share) in 2020 to Gen CapEx (25% of total share) in 2030.
How sensitive is future retail rate growth to variability in the growth of each rate driver, in isolation?
A 1% increase in the CAGR of Sales-CP-Cust results in a 0.88-0.93% decrease in CAGR of rates, in isolation.

Interpretation:
The x-axis identifies the specific rate driver that is allowed to vary while all others are held at their medium CAGR. The y-axis identifies how much the growth in retail rates changed (%) as a result of the change in the growth of that specific rate driver (%) on a normalized basis (i.e., elasticity). Ordering based on the magnitude of the average elasticity in the identified rate component.
A 1% increase in the CAGR of Gen CapEx costs results in a 0.07%-0.14% increase in CAGR of rates, in isolation.

Interpretation:
The x-axis identifies the specific rate driver that is allowed to vary while all others are held at their medium CAGR. The y-axis identifies how much the growth in retail rates changed (%) as a result of the change in the growth of that specific rate driver (%) on a normalized basis (i.e., elasticity). Ordering based on the magnitude of the average elasticity in the identified rate component.
A 1% decrease* in the CAGR of FPP results in a 0.10%-0.14% decrease in CAGR of rates, in isolation.

Interpretation:
The x-axis identifies the specific rate driver that is allowed to vary while all others are held at their medium CAGR. The y-axis identifies how much the growth in retail rates changed (%) as a result of the change in the growth of that specific rate driver (%) on a normalized basis (i.e., elasticity). Ordering based on the magnitude of the average elasticity in the identified rate component.

* The change in framing from increase to decrease in the rate driver is due to the fact that the growth in this rate driver, in contrast to all others, is contracting during the analysis period.
How uncertain and variable are the contributions of rate drivers?
Rate drivers will vary jointly in reality, so need to establish how their growth rates are correlated*

- Historical FF1 data suggests retail sales are highly positively correlated (r>0.9) with Dx O&M, Other O&M, and Dx CapEx; more modestly correlated with Tx CapEx (r=0.75), Gen CapEx (r=0.70), or Tx O&M (r=0.62)
- Strongest positive correlation (r>0.65) in cost-related rate drivers exists between the same type of CapEx and O&M (e.g., Gen); generally weaker cross-correlation across types of CapEx and O&M
- FPP costs ($/MWh) are not correlated with any other rate driver (|r|≤0.1)

*Correlation is an estimate of how related two variables are: do they consistently move together, apart, or randomly in different directions?
When variability is applied jointly to all rate drivers, Gen CapEx remains the largest but is also the most uncertain rate component.

Interpretation:
The x-axis identifies the specific retail rate component. The y-axis identifies how much that share of the rate component in 2030 varies when the annual growth in all rate drivers varies jointly.

*** Ordering based on the magnitude of the median in the identified rate component.
Conclusions and Discussion
Conclusions

- Future retail rate growth is driven by sizable increases in all CapEx costs, when assuming medium growth rates in all rate drivers.
 - Generation CapEx is the largest component of retail rates in 2030 (comprising 25% of the total retail rate), replacing FPP costs which was the largest contributor in 2020 (comprising 22% of total retail rate)

- Considering the contributions and variability of each rate driver in isolation:
 - Rate growth is very sensitive to growth in sales/customers/peak demand whereby a 1.0% increase in the growth of sales/customers/peak demand results in a 0.9% reduction in the growth of rates
 - Growth in FPP and CapEx both have smaller but more uncertain impacts on rate growth: a 1% increase in either results in a 0.10-0.14% or 0.07-0.14% increase in the growth of rates

- Considering the contributions and variability of each rate driver jointly:
 - Generation CapEx remains the largest and is now the most uncertain component of retail rates in 2030
Discussion

- Results suggest factors that minimize retail rate growth and/or decrease its uncertainty include:
 - Higher growth in sales (e.g., electrification) because proportional increases result in a fairly similar reduction in retail rates, which are far greater than any other rate driver;
 - Managing the growth in generation CapEx and FPP costs through efforts to improve system load factor (e.g., peak-focused demand response, customer-scale energy storage); and
 - Continuing to drive down the costs of fuel and purchased power through increased deployment of renewable energy.

- Absolute rate impacts may be less important than the ordering of drivers and relationship to one another in the context of identifying actions to address future rate growth.
 - Stochastic analysis that factors in relationships of rate drivers can prioritize actions.
 - Whether rate impacts manifest will come down to individual state policies and decisions that mitigate or exacerbate these relationships.
Contacts
Peter Cappers | pacappers@lbl.gov
Sydney Forrester | spforrester@lbl.gov
Andrew Satchwell | asatchwell@lbl.gov

For more information
Download publications from the Electricity Markets & Policy: https://emp.lbl.gov/publications
Sign up for our email list: https://emp.lbl.gov/mailing-list
Follow the Electricity Markets & Policy on Twitter: @BerkeleyLabEMP

Acknowledgements
This work was funded by the U.S. Department of Energy Office Energy Efficiency and Renewable Energy’s Strategic Analysis Team, under Contract No. DE-AC02-05CH11231. We would like to especially thank Seungwook (Ookie) Ma for his support of this work. For comments and input on this analysis, we also thank Galen Barbose and Sean Murphy.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.
UTILITY CHARACTERIZATION AND RATE DRIVER GROWTH RATE ASSUMPTIONS
Utility Characterization
Sales, Peak Demand, and Customers

<table>
<thead>
<tr>
<th></th>
<th>Retail Sales (2019 Value)</th>
<th>Peak Demand</th>
<th>Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019 Level</td>
<td>20,092 GWh</td>
<td>4,072 MW</td>
<td>962,851</td>
</tr>
<tr>
<td>CAGR (Low</td>
<td>Med</td>
<td>High)</td>
<td>-0.2%</td>
</tr>
</tbody>
</table>

- **2019 Level**
 - Directly applied sample weighted average FERC Form 1 (FF1) data for 2019
 - Derived peak demand based on 56% annual load factor

- **CAGR**
 - By imposing constant use-per-customer and load factor over entire analysis period, all CAGRs apply to all three categories of data
 - Assumption derived from FF1 data analysis that showed the three are highly correlated with each other

- Lower bound value is directionally consistent with historical analysis as well as several regional forecasts (i.e., Texas and California) that assumed negative sales growth in some scenarios. Texas' lowest forecast was -0.6%. California was the outlier even lower at -1.6%.

- The medium value is consistent with several regional and national sales forecasts which assume some retail sales growth >0.0% and <1.0%.

- The upper bound value is much higher than historical because of literature with upper bound load growth in the 1.5%-2.0% range
Utility Characterization

Fuel and Purchased Power Costs

<table>
<thead>
<tr>
<th></th>
<th>FPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019 Value</td>
<td>$39/MWh</td>
</tr>
<tr>
<td>**CAGR (Low</td>
<td>Med</td>
</tr>
</tbody>
</table>

- **2019 Level**
 - Directly applied 2019 FF1 sample weighted average utility fuel and purchased cost ($/MWh) for 2019

- **CAGR**
 - Lower bound value is consistent with recent historical analysis, as other FPP forecasts (e.g., EIA’s AEO) have consistently over-forecasted cost growth (i.e., positive CAGRs)
 - The medium value is also consistent with recent historical analysis for the same reason
 - The upper bound value is much higher than historical to match EIA AEO’s upper bound growth forecasts in the 1.5%-2.2% range
Utility Characterization
(Non-Fuel) Operations & Maintenance Costs

<table>
<thead>
<tr>
<th></th>
<th>Generation</th>
<th>Transmission</th>
<th>Distribution</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019 Value</td>
<td>$311M</td>
<td>$202M</td>
<td>$120M</td>
<td>$1,252M</td>
</tr>
<tr>
<td>CAGR (Low</td>
<td>Med</td>
<td>High)</td>
<td>0.0%</td>
<td>0.9%</td>
</tr>
</tbody>
</table>

- **2019 Levels**
 - Derived 2019 FF1 sample weighted average Generation, Transmission, Distribution, and Other O&M normalized values ($/Cust) for 2019
 - Applied these normalized values to the number of customers to derive starting year values

- **CAGR**
 - Lower, medium, and upper bound CAGRs are consistent with recent historical analysis
 - There is no literature that categorically and descriptively forecasts O&M costs
 - Any proposed deviation from historical FF1 CAGRs would be arbitrary on our part
Utility Characterization
Capital Structure and Cost of Capital

<table>
<thead>
<tr>
<th></th>
<th>Share of Debt</th>
<th>Debt Service Cost</th>
<th>Authorized ROE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019 Value</td>
<td>56%</td>
<td>4.0%</td>
<td>9.65%</td>
</tr>
</tbody>
</table>

- **2019 Level**
 - **Capital Structure:** EEI 2019 Financial Review provided the share of debt in the utility’s capital structure for all U.S. electric utilities (~56%)
 - **Debt Service Cost:** EEI 2019 Financial Review provided the ratio of interest expenses and total short- and long-term debt for all U.S. electric utilities
 - **Authorized ROE:** S&P Global Market Intelligence reported that the average U.S. electric utility in 2019 received authorization to earn 9.65% return on equity
Utility Characterization
Rate Base

<table>
<thead>
<tr>
<th></th>
<th>Gross Plant in Service</th>
<th>Accumulated Depreciation</th>
<th>Avg. Asset Service Life</th>
<th>ADIT Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019 Value</td>
<td>$12,671M</td>
<td>$4,815M</td>
<td>34 years</td>
<td>95%</td>
</tr>
</tbody>
</table>

2019 Level

- Calculated the weighted average normalized FF1 Gross Plant in Service and Accumulated Depreciation ($/Cust) for 2019
- Applied these normalized values to the number of customers to derive starting year values
- Derived the FF1 average asset lifetime, based on the inverse ratio of 2019 depreciation expense and gross-plant in service
- Maintained previous FINDER analysis assumptions about ADIT percentage
Utility Characterization
Capital Expenditure Budgets

<table>
<thead>
<tr>
<th></th>
<th>Generation</th>
<th>Transmission</th>
<th>Distribution</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019 Value</td>
<td>$563M</td>
<td>$298M</td>
<td>$258M</td>
<td>$79M</td>
</tr>
<tr>
<td>CAGR (Low</td>
<td>Med</td>
<td>High)</td>
<td>-5.3%</td>
<td>4.7%</td>
</tr>
</tbody>
</table>

- **2019 Levels**
 - Derived 2019 FF1 sample weighted average Generation, Transmission, Distribution, and Other CapEx normalized values ($/Cust) for 2019
 - Applied these normalized values to the number of customers to derive starting year values

- **CAGR**
 - Lower, medium, and upper bound CAGRs are consistent with recent historical analysis
 - The literature for Generation, Transmission, and Distribution CapEx forecasts reflects substantial uncertainty on the direction of change from current budgets based on differing assumptions

- Recent EEI and S&P Global short-term (2020-2022) U.S. electric utility CapEx forecasts predict flat spending on a CAGR basis; but EEI notes that these near-term forecasts have historically underestimated spending (i.e., 6-10% for 2nd year of forecast and 20-25% for 3rd year of forecast)

- After accounting for historical underestimation of these forecasts, growth rates for Transmission and Distribution are consistent with low end CAGRs from historical analysis and medium CAGRs for Generation.